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Quantitative analyses of biological sequences generally proceed
under the assumption that individual DNA or protein sequence
elements vary independently. However, this assumption is not
biologically realistic because sequence elements often vary in a
concerted manner resulting from common ancestry and structural
or functional constraints. We calculated intersite associations
among aligned protein sequences by using mutual information. To
discriminate associations resulting from common ancestry from
those resulting from structural or functional constraints, we used
a parametric bootstrap algorithm to construct replicate data sets.
These data are expected to have intersite associations resulting
solely from phylogeny. By comparing the distribution of our
association statistic for the replicate data against that calculated
for empirical data, we were able to assign a probability that two
sites covaried resulting from structural or functional constraint
rather than phylogeny. We tested our method by using an align-
ment of 237 basic helix–loop–helix (bHLH) protein domains. Com-
parison of our results against a solved three-dimensional structure
confirmed the identification of several sites important to function
and structure of the bHLH domain. This analytical procedure has
broad utility as a first step in the identification of sites that are
important to biological macromolecular structure and function
when a solved structure is unavailable.

Quantitative analyses of biological sequences are the corner-
stone for studies in bioinformatics and molecular evolution.

Such analyses generally proceed assuming that the sites in
individual DNA or protein sequences vary independently, i.e.,
amino acid replacements at site X occur independently of those
at site Y (1). Biochemical and biophysical studies show this
assumption is not biologically realistic because sequence ele-
ments often change in a concerted manner (2–6). Nonrandom
associations among sites within sequences arise from at least
three sources: (i) chance, (ii) common ancestry (5 phylogeny),
and (iii) structural or functional constraints. (For simplicity,
associations resulting from structure and function are considered
to be equivalent.) Effectively discriminating among these un-
derlying causes facilitates understanding the origin and magni-
tude of associations observed among sites in biological sequences
and clarifying the role of such associations in evolution.

The first step in resolving questions about the origins of
associations among sequence elements is to generate replicate
data sets that vary according to specific underlying evolutionary
models. For biological sequences, the typical model components
are a reconstructed phylogeny and a nucleotide or amino acid
substitution matrix. These components are relevant because
sequence diversity has been generated by a process of descent
with modification from a common ancestor.

Historical associations between sequences are represented by
the reconstructed phylogeny. The topology of the evolutionary
tree specifies the cladistic relationships among sequences,
whereas the branch lengths reflect the amount of change that has
occurred among sequences. The specific changes that occur in
the various sequences are summarized by the substitution matrix.
This matrix can consist of uniform substitution probabilities

[e.g., Jukes–Cantor model for DNA substitution (7)], be partially
parameterized [Kimura two-parameter model for DNA (8)], or
completely parameterized [Jones–Taylor–Thornton (9) substi-
tution matrix for proteins]. In combination, the phylogeny and
substitution matrix provide the parameters necessary to generate
stochastic data having historical relationships and substitution
classes reflecting specific conditions. The parametric bootstrap
procedure (10–12) uses this data-generation algorithm to create
replicate data sets that can be used to investigate the underlying
properties of aligned biological sequences.

Herein, we describe a general analytical method based on
parametric bootstrap simulations for the discrimination of in-
tersite associations resulting from stochastic and phylogenetic
sources from those resulting from structural and functional
associations. When a general substitution matrix (i.e., one de-
rived from a broad survey of protein sequences rather than the
specific data set being analyzed) is used, data generated with the
parametric bootstrap procedure will have intersite associations
arising only from shared evolutionary history. Therefore, an
intersite association statistic calculated for data sets generated by
using the parametric bootstrap will reflect only associations
among aligned sequence sites resulting from phylogeny or
chance. From the distribution of this statistic, one can calculate
a threshold value above which the statistic will have a specific
probability of resulting from causes other than phylogeny. Com-
parison of association statistic values calculated for the empirical
data alignment against this parametric bootstrap threshold al-
lows identification of pairs of sites having a specific probability
of interaction resulting from structure or function.

To demonstrate the utility of this approach, we analyzed a set
of 237 sequences containing the basic helix–loop–helix (bHLH)
DNA binding and dimerization domain. The bHLH proteins
have a well-described structure and are represented by a large
number of diverse sequences (13, 14). Having a well-defined
three-dimensional structure permits direct comparison of the
physical structure of the molecule with numeric data of intersite
associations. Thus, sites of known functional and structural
importance can be compared against the association statistics
involving these sites. The availability of a large number of bHLH
sequences increases confidence in the results by reducing the
effect of spurious associations.

Methods
Sequence Alignment and Phylogeny Construction. An alignment of
237 bHLH domains was generated by using CLUSTAL W (15) and

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: bHLH, basic helix–loop–helix; MI, mutual information; JTT, Jones–Taylor–
Thornton.

*To whom reprint requests should be addressed. E-mail: zooboy@coltrane.gnets.ncsu.edu.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073ypnas.070154797.
Article and publication date are at www.pnas.orgycgiydoiy10.1073ypnas.070154797

3288–3291 u PNAS u March 28, 2000 u vol. 97 u no. 7



improved by eye. A phylogenetic tree was then derived by using the
neighbor-joining algorithm (16) with mean pairwise distances. We
used a substitution matrix generated from a broad collection of
protein sequences using the Jones–Taylor–Thornton (JTT) algo-
rithm (9). As a consequence, our model for amino acid substitution
is not unduly influenced by the idiosyncrasies of a particular protein
family. Further, the resulting model has broad generality because
the JTT algorithm accounts for the underlying phylogeny of the
sequences when calculating the probability of change between
amino acids. Thus, data generated from a random ancestral se-
quence using this general substitution matrix and a specified
phylogeny should have either chance or phylogeny as their only
sources of observed association.

Alternatively, one could use a substitution matrix derived from
the specific data set being analyzed. To demonstrate the effect
a substitution matrix of this type would have on the parametric
bootstrap analysis, we used the RIND program (17) to calculate
a maximum-likelihood substitution matrix based on the bHLH
protein sequences. It is expected that a matrix of this type would
reflect the biases resulting from phylogeny, structure, and func-
tion that are inherent in the empirical data being analyzed.

Calculation of Intersite Associations. The next step is to accurately
estimate the magnitude of association between pairs of amino
acid sites. Because sequence elements are symbol variables with
no underlying metric, conventional statistical procedures for
estimating correlation among sites cannot be used (14). Thus,
intersite associations were estimated by using the mutual infor-
mation statistic (MI) from information theory (18, 19). Mutual
information measures the extent of association between two
positions in a sequence beyond that expected resulting from
chance. The mutual information MIXY between sites X and Y is
calculated as:

MIXY 5 O
i

O
j

P~Xi, Yj!logn

P~Xi, Yj!

P~Xi!P~Yj!
, [1]

where P(Xi) is the probability of i at site X, P(Yj) is the probability
of j at site Y, and P(Xi, Yj) is the joint probability of i at site X
and j at site Y (X Þ Y). The double summation runs over all
possible symbols at those sites. This formula has the property
that when symbols vary independently [i.e., P(Xi)P(Yj) 5 P(Xi,
Yj)], so that knowledge of j at site Y does not reduce the
uncertainty of i at site X, the mutual information is zero (0).

The minimum MI value of 0 also occurs for invariant sites.
Generally, the less variable a site is, the smaller its associated MI
values will be. The maximum MI value will occur when the
variation at two sites is perfectly correlated. Using a base-20
logarithm (n 5 20 in Eq. 1, corresponding to the 20 peptide-
forming amino acids) scales the maximum possible MI value to
unity, which will occur when the residues at these sites are
uniformly distributed. The maximum MI value will decline as the
distribution of residues at each site departs from uniformity.

Results and Discussion
MI Distributions. Fig. 1 provides inverted cumulative frequency
distributions of MI values calculated for the alignment of 237
bHLH domains and 1,000 parametric bootstrap replicates cal-
culated using two different types of substitution models. Inverted
cumulative distributions are calculated by subtracting from unity
the cumulative frequency within a particular range of MI values.
In this way, one achieves a distribution that declines in value as
the independent variable increases.

The inverted cumulative frequency distribution of MI values
for the parametric bootstrap replicates is then used to calculate
a threshold for acceptability of a false-positive result, as de-
scribed in the Fig. 1 legend. Setting a statistical acceptability

threshold permits the identification, within a quantifiable error,
of those intersite associations most probably arising from struc-
turalyfunctional causes. For example, any pair of amino acid sites
within the bHLH domain alignment having an MI value .0.188
has a probability of ,0.01 of resulting from phylogeny or chance
and, consequently, a .0.99 probability of reflecting an associ-
ation resulting from structuralyfunctional constraints. These
probabilities are reduced and increased by an order of magnitude
(0.001 and 0.999, respectively) for any pair of sites having MI
.0.250. Because these MI values have been calculated using a
base-20 logarithm, the maximum possible MI value is unity,
although the largest MI value calculated for any pair of sites in
the bHLH domain was 0.413. The sites having MI values .0.188
are presented in Table 1.

Comparison Against Three-Dimensional Structure. To gauge the
efficacy of this algorithm, we compared the sites presented in
Table 1 with the solved three-dimensional structure of a repre-
sentative bHLH domain. Crystal structure studies have been
carried out on the bHLH domains of six proteins: Max (20), E47
(21), MyoD (22), USF (23), PHO4 (24), and SREBP (25). As the
bHLH domains in these molecules all have the same general
organization of a DNA-binding, predominantly basic a-helix (b),
an amphipathic a-helix contiguous with the basic region (H1), a
variable length loop, and a second a-helix (H2), we used the
bHLH domain of the Max protein as our representative bHLH
structure. All site numbers refer to the Max structure as pre-
sented by Ferre-D’Amare et al. (20).

Each turn in an a-helix requires approximately 3.6 residues.
Therefore, residues that are seven sites apart will lie on the same
face of the helix. Also, residues that are three or four sites apart
will lie approximately above or below each other. In the initial
a-helix (byH1), site pairs (30, 37), (30, 44), (38, 45), (41, 48), and

Fig. 1. Inverse cumulative frequency distribution of MI values for the
alignment of 237 bHLH protein sequences and 1,000 parametric bootstrap
replicates using either the JTT substitution matrix or the RIND substitution
matrix. MI values were calculated by using Eq. 1 with n 5 20 so that the
maximum possible value is unity. Line A is the P , 0.01 threshold for the JTT
replicates at MI 5 0.188. Line B is the P , 0.001 threshold for the JTT replicates
at MI 5 0.250. Line A9 is the P , 0.01 threshold for the RIND replicates at MI 5
0.359. Line B9 is the P , 0.001 threshold for the JTT replicates at MI 5 0.408.
These were the MI values that were .99% (for P , 0.01) or 99.9% (for P ,
0.001) of the MI values calculated in the parametric bootstrap replicates.
Because MI is a pairwise measure, x(x 2 1)y2 values were calculated in each
replicate, where x is the number of nongapped sites in the alignment. For the
alignment of 237 bHLH sequences, there were 32 sites without gaps, resulting
in 496 MI values per replicate.
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(42, 49) would be on the same face of the helix and have
significant MI values. In this same region, site pairs (37, 41), (38,
41), (38, 42), (41, 44), (41, 45), (42, 45), (44, 47), (44, 48), and (45,
49) would be spatially adjacent in the helix and have significant
MI values. In H2, the site pairs (61, 65), (62, 65), (65, 68), (65,
69), (68, 72), and (69, 72) are spatially adjacent and have

significant MI values. Site pairs (61, 68), (62, 69), and (65, 72) are
on the same face of the helix and have significant MI values. In
both helical regions, many of the same sites are involved in these
interactions separated by three, four, and seven residues,
prompting speculation that these sites are important to helical
integrity.

Table 1. MI values calculated for 237 bHLH domains and arranged by site number

Site no. MI Site no. MI Site no. MI

30 37 0.3235 39 44 0.2365 47 65 0.2139
30 38 0.3269 39 49 0.1896 47 68 0.2087
30 39 0.1912 39 62 0.2378 47 72 0.2068
30 41 0.2856 39 65 0.2053 48 49 0.3129
30 42 0.2559 39 72 0.2123 48 50 0.2229
30 44 0.3599 41 42 0.2652 48 59 0.2747
30 45 0.2751 41 44 0.3496 48 61 0.2695
30 47 0.2328 41 45 0.2120 48 62 0.3184
30 48 0.2759 41 48 0.2674 48 65 0.2533
30 49 0.3022 41 49 0.2569 48 68 0.2148
30 50 0.1954 41 61 0.1978 48 69 0.2511
30 57 0.1935 41 62 0.2666 48 72 0.3086
30 59 0.2671 41 65 0.2070 49 50 0.2471
30 61 0.2415 41 68 0.2395 49 57 0.2059
30 62 0.3151 41 69 0.2637 49 59 0.2775
30 65 0.2802 41 72 0.2969 49 61 0.3044
30 68 0.2676 42 44 0.3545 49 62 0.3388
30 69 0.2365 42 45 0.2092 49 65 0.2965
30 72 0.3481 42 47 0.1918 49 68 0.2590
37 38 0.3764 42 48 0.3140 49 69 0.2734
37 39 0.2360 42 49 0.2693 49 72 0.3608
37 41 0.3063 42 59 0.2582 50 57 0.2109
37 42 0.3476 42 61 0.2440 50 59 0.2229
37 43 0.1935 42 62 0.3418 50 61 0.1962
37 44 0.4094 42 65 0.3091 50 62 0.2073
37 45 0.2957 42 68 0.2128 50 65 0.1910
37 47 0.2347 42 69 0.2616 50 72 0.2462
37 48 0.3469 42 72 0.2802 57 62 0.2023
37 49 0.3716 44 45 0.3231 57 65 0.2046
37 50 0.2314 44 47 0.3008 57 72 0.1962
37 57 0.1992 44 48 0.3627 59 61 0.3254
37 59 0.3462 44 49 0.3565 59 62 0.3526
37 61 0.3638 44 50 0.2659 59 65 0.2890
37 62 0.3865 44 57 0.2744 59 68 0.1936
37 65 0.3569 44 59 0.3535 59 70 0.1953
37 67 0.1940 44 61 0.3206 59 71 0.1920
37 68 0.3018 44 62 0.4099 59 72 0.3097
37 69 0.2834 44 65 0.3866 61 62 0.3435
37 70 0.1915 44 68 0.3132 61 65 0.2963
37 72 0.3769 44 69 0.2869 61 68 0.2501
38 41 0.2871 44 72 0.4130 61 69 0.2422
38 42 0.2640 45 49 0.2949 61 72 0.3415
38 44 0.3756 45 59 0.2154 62 65 0.4131
38 45 0.2419 45 61 0.2426 62 68 0.3092
38 47 0.2150 45 62 0.2503 62 69 0.2448
38 48 0.2812 45 65 0.2537 62 70 0.1886
38 49 0.3269 45 68 0.1919 62 71 0.1925
38 50 0.2317 45 69 0.1973 62 72 0.3757
38 59 0.2906 45 72 0.2514 65 68 0.2528
38 61 0.3135 47 48 0.1966 65 69 0.2338
38 62 0.3477 47 49 0.2128 65 70 0.1967
38 65 0.2997 47 57 0.2227 65 72 0.3412
38 68 0.2936 47 59 0.2227 68 69 0.2018
38 69 0.2384 47 61 0.2325 68 72 0.3048
38 72 0.3569 47 62 0.2671 69 72 0.3032

Only pairs of sites having MI . 0.188 (P , 0.01) are included.
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Ferre-D’Amare et al. (20) identified several sites having
important interactions within the molecule, with the dimeriza-
tion partner, or with the DNA recognition sequence. Sites 47 and
57, which have a significant association at P # 0.003, were
identified as being important to the stability of the loop con-
formation. Sites 70 and 71 were shown to be involved in several
packing interactions. Many associations involving these two sites
[(37, 70), (59, 70), (59, 71), (62, 71), and (65, 70)] were significant
at 0.009 # P # 0.007. However, many of the sites involved in the
specific packing interactions identified in ref. 20 did not have
significant MI values because of the lack of variability at one or
both of the sites.

Effect of an Alternative Substitution Model. In any numerical
simulation of a physical process, the validity of the results
depends on the assumptions of the underlying models. For
phylogenetic analyses, the results are dependent on the confi-
dence one has that the tree is a realistic description of the history
of the data being analyzed. The parametric bootstrap also
depends on the tree as the source of information about the level
and distribution of sequence variation. The residue substitution
matrix specifies the probabilities of specific amino acid changes
that occur between sequences in the simulation. Biases in this
matrix can affect the potential associations measured in the
resulting simulated sequences. However, a matrix having no
biases (i.e., a matrix of identical substitution probabilities) would
ignore the biology of the substitution process.

As seen in Fig. 1, the distribution of MI values generated using
the parametric bootstrap with the RIND substitution matrix is
much more similar to the distribution of the empirical MI values
than the distribution generated using the JTT substitution
matrix. The MI values for the two statistical thresholds (P , 0.01
and P , 0.001) are increased to 0.359 and 0.408, respectively, for
the RIND matrix distribution. Although there are empirical MI
values greater than these thresholds, several of the significant
associations identified above have MI values that fall below the
RIND thresholds. This reduction in sensitivity is the result of the
specificity of the RIND substitution matrix to the bHLH sequence
data, which guarantees that any biases because of structural and
functional constraints on substitution will be incorporated into
the substitution matrix. For this reason, any analyses incorpo-
rating constraints on the evolution of sites in biological se-
quences should use a substitution matrix derived from a broad
sample of sequences.

The way in which structural and functional constraints act on

the evolutionary process will influence the variation seen in
existing molecular sequences. These influences will be incorpo-
rated into the reconstructed phylogeny by the algorithm used to
derive it. This leads to a certain level of circularity in the use of
the parametric bootstrap to partition sources of association.
However, the existence of empirical values greater than reason-
able statistical thresholds for acceptance of false-positive results,
and the divergence of the empirical and bootstrapped JTT MI
distributions, lead us to believe that the problem of circularity is
not insurmountable.

Statistical Identification of Structurally and Functionally Important
Sites. We used the parametric bootstrap algorithm to construct
a statistical distribution that reflects the associations between
sites in a biological sequence exclusively resulting from a specific
phylogeny (and chance). This distribution was then used to
calculate a threshold, above which the calculated statistic should
(with a specific probability) reflect structural and functional
associations. Several sites identified from the solved three-
dimensional structure as being important to bHLH domain
structure and function were found to correlate with predictions
based on MI values. It is possible that pairs of sites with values
less than the threshold could be exhibiting associations resulting
from structure or function. However, based on the distribution
from the parametric bootstrap replicates, the level of confidence
one would have in making this assertion would be reduced.

Using this parametric bootstrap-based algorithm to differen-
tiate phylogenetic and chance associations from those resulting
from structure and function will be quite useful for any sequence
analysis that requires knowledge of higher-level structure. For
example, in phylogenetic studies, this approach allows one to
construct a character weighting scheme so that the resulting
analysis more closely reflects the primary assumption of intersite
independence. For molecular function analyses, the statistical
threshold permits identification of sites of possible importance
in site-directed mutagenesis analyses. For protein structural
analyses, the statistical threshold allows the identification of sites
important to structure without having a solved structure. Com-
parison against a solved structure could identify sites important
to secondary or tertiary structure that may not be obvious by
inspection of the solved structure.
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